Question Number	Answer	Mark
1(a)	Current in A is equal to current in B (1)	
I (d)	p.d across A is <u>less than p.d.</u> across B (1)	
	Resistance of A is less than the resistance of lamp B (1)	3
(b)	Resistors in parallel have same p.d (1)	
	Identifies $P = V^2 / R$ OR $P = VI$ and $I_A > I_B$ (1)	
	Uses this equation to state $P_A > P_B$.	
	OR bulb A brighter than bulb B. Consequent on 2 nd marking point (1)	3
	Total for question	6

Question	Answer		Mark
Number			
2	$I_3 = I_2 + I_1$ (possible reference to $(Q/t)_1$ etc accepted)	(1)	
	Charge is conserved Or Conservation of charge Or charge into point = charge out of point Or no charge lost	(1)	
	Correct reference to same time	(1)	3
	(e.g. same charge etc in same time $\mathbf{Or} (Q/t)_3 = (Q/t)_1 + (Q/t)_2 \text{ etc})$		
	Total for question		3

Question Number	Answer		Mark
3	current same in series Or current is different if not in series to ensure the total resistance in the circuit isn't increased Or to ensure no pd lost because that would reduce the current being measured [Just saying current changes or resistance changes is not sufficient for MP2 and 3. Candidates wh only refer to what would happen if ammeter in parallel can only score MP1]	(1) (1) (1)	3
	Total for question		3

Question	Answer		Mark
Number			
4 (a)	Q = It stated	(1)	
	A is a unit of current and h is a unit of time (hence Ah is charge)	(1)	
		.,	
	Or		
	use of $Q = It$ with values in A and h	(1)	
	Completed by conversion of h to s and use of C	(1)	2
		(.)	-
4(b)	Use of $W = IVt$	(1)	
.()	$W = 10\ 000\ J$	(1)	2
		(.)	-
	Example of calculation		
	$\frac{1}{W} = 0.19 \text{ A} \times 10 \text{ h} \times 1.5 \text{ V}$		
	$= 0.19 \text{ A} \times 10 \times 60 \times 60 \text{ s} \times 1.5 \text{ V}$		
	W = 10260 J		
4(c)	W = 10200 J Use of $W = QV$	(1)	
-1(0)	Energy = 8600 J	(1)	2
	Energy $= 8000$ J	(1)	2
	Example of calculation		
	$W = 7200 \text{ C} \times 1.2 \text{ V}$		
	$W = 7200 C \times 1.2 V$ = 8640 J		
4(d)	(lack of J only penalised once in (b) and (c))	(1)	
-+(u)	Use of efficiency = (output energy/input energy) \times 100%	(1)	
	{It must be their (c) divided by their (b)}		
	Efficiency $= 960/$ (accept 0.96) Use of 10260 L $> 940/$	(1)	2
	Efficiency = 86% (accept 0.86) Use of 10260 J \rightarrow 84%	(1)	2
	ecf their values from (b) and (c) (Do not award MP2 if efficiency is >100%)		
	Example of colorision		
	Example of calculation		
	Efficiency = $(8640 \text{ J} \div 10000 \text{ J}) \times 100\%$		
	= 86%		0
	Total for question		8

Question Number	Answer		Mark
5(a)(i)	Ammeter and voltmeter both correct	(1)	1
5(a)(ii)	Z at the bottom of the potential divider from or down to z eg	(1)	1
5 (b)(i)	Current =0.75 (A) (range 0.74 A – 0.76 A) Use of $V = IR$ Resistance = 13-14 Ω (incorrect current e.g. use of tangent, scores 1 max for use of $V = IR$) $\frac{\text{Example of calculation}}{R = \frac{V}{I} = \frac{10 \text{ V}}{0.75 \text{ A}} = 13.3\Omega}$	(1) (1) (1)	
	1 0.75 A		3
* 5 (b)(ii)	 (QWC- Work must be clear and organised in a logical manner using technical wording where appropriate.) Max 3 Initially or until about 4 V, I α V/Ohmic conductor (Increasing the) <u>current</u> causes heating effect /temperature rise Resistance increases OR increases lattice/ion/atoms vibrations Rate of increase of current (with potential difference) decreases 	(1) (1) (1) (1)	3
5(c)(i)	Reading current values at 4 V of <u>both</u> 0.3 (A) and 0.5 (A) (power of 10 error allowed eg 3(A)and 5 (A) seen) Current = 0.8 A (allowing for ± 0.1 mm square tolerance, accept range 0.76A to 0.84A)	(1) (1)	2
5(c)(ii)	p.d. across R = 8 $R = \frac{8 V}{0.8 A} = 10 \Omega$ (allow ecf from part (c)(i) for the value of <i>I</i> substituted) (accept answers in range 9.52 Ω to 10.53 Ω using range for <i>I</i>)	(1)	2
5(c)(iii)	Resistance of P greater than resistance of parallel combination P will have a greater (share of the) pd OR R will have a lower (share of the) pd Reading on voltmeter will increase	(1) (1) (1)	3
	Total for question		15

Question	Answer		Mark
Number			
6 (a)	Use of $Q = It$ or $\Delta Q = I\Delta t$ with any relevant time	(1)	
	$t = 5 \times 3600$	(1)	
	divide Q by 1.6×10^{-19}	(1)	
	number of electrons = 4×10^{23}	(1)	4
	Example of calculation		
	Number of electrons = It/e		
	Number of electrons = $3.5 \text{ A} \times 5 \times 3600 \text{ s} / 1.6 \times 10^{-19} \text{ C}$		
	Number of electrons = 3.9×10^{23}		
6 (b)	Use of $E=hf$ (ignore powers of 10 errors in f)	(1)	
	(gives $E = 3.6 \times 10^{-19} J$)		
	Divides 10 by their value of energy	(1)	
	Number of photons = 3×10^{19}	(1)	3
	(likely to see 2.7 or 2.8 depending on use of calculator: both correct)		
	Example of calculation		
	Energy of 1 photon = 6.63×10^{-34} Js $\times 5.5 \times 10^{14}$ Hz = 3.6×10^{-19} J		
	Number of photons = $10 \text{ W}/3.6 \times 10^{-19} \text{ J}$		
	Number of photons = 2.8×10^{19}		
	Total for question		7